
scale .  The choice of coordinates  was based on the assumpt ion  that  there  is  a l inear  dependence of r e s i s t i ve  
fo r ce s  on m a t e r i a l  density,  which was noted for  the ave rage  values of the fo rces  [4]. It was fur ther  a s sumed  
that  f luctuat ions of the fo r ce s  produced by d i sp lacement  of the solid phase  during mot ion of gas  bubbles is  
de t e rmined  by the f i l t ra t ion of an excess  amount of gas  above that needed to mainta in  the m a t e r i a l  in a sus -  
pended state.  In the a s sumed  coordinate  sys t em,  the exper imen ta l  points obtained at var ious  a i r  f i l t ra t ion 
r a t e s  for  f i v e  different  m a t e r i a l s  a r e  grouped around a s t ra ight  line desc r ibed  by the re la t ion 

G 
= ( U  - -  Uo)~ 

P 

The g r e a t e s t  deviation of exper imenta l  points  f r o m  the approximat ing re la t ion  does not exceed 70%, 
which mus t  be cons idered  sa t i s f ac to ry  for  so unstable a sy s t em as a fluidized bed. It mus t  be pointed out 
that  this  re la t ion  also extends to expe r imen t s  with la rge  pa r t i c l e s  where  the resu l tan t  gas  bubbles become 
c o m m e n s u r a t e  with the c r o s s  sect ion of the column and plunger  d isp lacement  of the m a t e r i a l  in the bed is 
observed.  

The re la t ion  obtained d e m o n s t r a t e s  the effect  of m a t e r i a l  c h a r a c t e r i s t i c s  and of gas  f i l t ra t ion ra te  on 
m a x i m u m  fo rces  in a bed, but it  does not re f lec t  the effect  of the g e o m e t r i c  p a r a m e t e r s  of the sys tem.  

N O T A T I O N  

d, pa r t i c l e  d iamete r ;  G, force  acting on a body in a fiuidized bed; U0, ra te  fo r  init iation of fluidization; 
U, gas  f i l t ra t ion ra te ;  p, m a t e r i a l  density;  H, bubble rad ius .  
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Equations a r e  der ived  for  the effect ive t r a n s p o r t  coeff ic ients  in a sy s t em of contacting spher i ca l  
pa r t i c l e s  i m m e r s e d  in a nonconducting medium.  

A substant ia l  contr ibution can come f r o m  the con tac t ing-par t i c le  f r a m e w o r k  to the t r a n s p o r t  p r o c e s s e s  
in a h igh-concent ra t ion  g ranu la r  medium;  for  ins tance ,  this  f r a m e w o r k  component  can have a m a r k e d  effect 
on the total  heat  flux in a g r anu la r  med ium if the t h e r m a l  conductivity of the pa r t i c l e s  is  much higher than 
that  of the continuous phase  (see [1, 2] for  a survey  of the exper imenta l  data). In pa r t i cu la r ,  the theory  of 
t h e r m a l  conductivity for  g ranu la r  m a t e r i a l s  [3] for  ~1 >> ~0 always g ives  r e su l t s  for  the effect ive t h e r m a l  
conductivity sys t ema t i ca l ly  lower  than those f r o m  exper iment  if  the t r a n s f e r  by contact  between the pa r t i c l e s  
is  neglected,  whereas  theory  ag ree s  e x t r e m e l y  well  with exper imen t  if  ~ 1 ~ ~0- 

Under  ce r ta in  e x t r e m e  conditions,  this  component  of the f l uxmay  be the dominant one. F o r  instance,  it has been 
found [4] that  this  occurs  for  u ran ium and z i rcon ium powders  in var ious  ga se s  at p r e s s u r e s  below 10-2-10 -1 mm Hg. 
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Fig. 1. Par t i c le  in contact  with adjacent 
par t ic les  (a) and geomet ry  of a single con- 
tact  (b). 

The effects of par t ic le  contacts  and the f ramework  conductivity are  even more  substs~tial in e lec t r ica l  
conduction in an immobile  granular  ma te r i a l  with permanent  contacts  between par t ic les  and also in a fluidized 
bed where the par t ic les  are  in contact  as a resul t  of coll ision if the continuous phase is an insulating medium 
or if the e lec t r ica l  conductivity of the la t ter  is much less  than that of the par t ic les  [5]. 

The existing t rea tments  of f r amework  conduction are  very  s imi lar  and involve either approximate s imula-  
tion in t e r m s  of conducting cel ls  of var iable  c ro s s  section [2] or numer ica l  examination of the boundary-value 
problem for  the Laplace equation nea r  a single contact  [6, 7]. In what follows, the effective f ramework  con- 
ductivity of an immobile  granular  bed is considered via a simple ensemble-averaging procedure.  The t rea t -  
ment is simplified by considering the continuous phase as completely nonconducting, while the par t ic les  are  
t rea ted  as spheres  of identical radius a. As a rule,  heat t ranspor t  is envisaged, although the resul ts  apply 
equally to the t r anspor t  of any analogous quantity. 

The par t ic les  are  in random contact,  the number  of contacts  varying f rom one par t ic le  to another, as 
do the posit ions of the contacts  with respec t  to the labora tory  axes, which pass  through the center  of a particle.  
That is, the number  of contacts  is random and the contacts  themselves  are  specified by random angular 
var iables  and have random microphys ica l  pa ramete rs .  If we average over many par t ic les  under identical 
macroscop ic  conditions (i. e., an ensemble of par t ic les) ,  we a r r ive  in the usual way at a concept of par t ic les  
subject to cer ta in  average microscopic  conditions (i. e., t r ia l  particles).  The contacts  of such a par t ic le  with 
its neighbors  may be cha rac te r i zed  in t e r m s  of a distribution, which is denoted in what.follows by �9 (0, ~o) 
in t e r m s  of the angular var iables  0 and ~ ; this function is normal ized  to the coordination number ~ of the 
par t ic les  in the bed. Contacts with given 0 and q are  charac te r i zed  by means  of cer ta in  average m i c r o -  
physical  pa rame te r s ,  which are  s ingle-valued functions of these angular variables.  The distribution is de- 
pendent not only on the pa rame te r s ,  but also on the quantities that descr ibe  the macroscop ic  state of an ele- 
ment in the bed. 

There  is a d i rec t  method of deriving the relationship between the mean heat flux and the mean t empera -  
ture gradient  in the sys tem by solving the thermal-conduct ion problem for  a single par t ic le  with a specified 
number  of contacts  of specified disposition and pa rame te r s ,  subject to the condition that there  is no heat loss 
over  the surface of a par t ic le  apart  f rom the contact a reas ,  where different boundary conditions apply. This 
approach allows us to derive a l inear relationship between the mean tempera ture  gradient  and the mean heat 
flux af ter  averaging over  the volume of a particle.  The subsequent averaging over the ensemble in principle 
resul ts  in the des i red  equation. 

This t radi t ional  approach is ve ry  difficult to real ize  on account of difficulties in formulating the boundary 
conditions for  the contact a reas  and in solving the boundary-value problem for the thermal-conduct ion equa- 
tion, since averaging over the ensemble with respec t  to �9 (~, ~) involves integration over  a complicated con- 
figuration space fo rmed by the angular var iables  for all the contacts.  A different and much simpler  approach 
is therefore  used below. 

F i rs t ,  the averaging over  the ensemble is per formed,  and then the thermal-conduct ion problem is solved 
for a par t ic le  whose contacts  with other par t ic les  are  descr ibed by ~ (0, ~). It is c lear  that this approach is 
justified because the above operations can be r eve r sed  in sequence, which itself follows direct ly f rom the 
commutat ion of ensemble averaging and differentiation, as well as f rom the l ineari ty of the rmal  conduction. 
This feature allows one to overcome the above difficulties and to reduce the initial ext remely  complicated 
p rob l em to a se r ies  of e lementary  ones. 
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The averaging is based on the observat ion that the macroscop ic  proper t ies  of a granular  bed sca rce ly  
vary  over dis tances of the o rde r  of the microscopic  scale,  i . e . ,  the s izes  of the individual gra ins  (this, in 
general ,  is  a neces sa ry  condition for one to use continuum methods in describing any t ranspor t  p rocess  in a 
heterogeneous medium). This means that the s tat is t ical  weights and microphys ica l  pa rame te r s  of opposite 
contacts  on the t r ia l  par t ic le  may be considered as identical, so we have a t r ia l  par t ic le  whose surface has a 
continuously distr ibuted pIair of identical d iametr ica l ly  opposite contacts.  ~ The stat is t ical  weight of this pair  
is descr ibed by f(0, ~) = /~ ~ (0, ~0), which is c lear ly  normal ized  to ~/2. 

We f i rs t  consider  the heat t ranspor t  in a par t ic le  due to heat t r ans fe r  through the contacts with adjacent 
par t ic les  as in Fig. in; the line joining the centers  of the contact a reas  fo rms  an angle ~ with the mean heat-  
flux direct ion in the bed (the x axis). Each contact has an area  s or an indentation distance 0 (Fig. lb), which 
are  related$ by 

s = 2.~a6 (6 ((. a). (1) 

In general ,  s and 6 are  dependent on the orientation of the contact with respec t  to the principal  axes of the state 
of s t ra in  in the bed (i. e., they are functions of 0 and ~0). Since there is no heat t ranspor t  in the gaps between 
the par t ic les ,  the vec to rs  represent ing the heat flux s tar t  f rom one contact  area  and pass  to the other, while 
remaining ent i re ly witbin the par t ic le ;  they also are  tangential  to the surface at all points, apart  f rom the 
points of contact. 

We introduce a cyl indr ical  coordinate sys tem whose axes z and r are  shown in Fig. la ;  we integrate the 
local relation Q = - h  1 VT over  the section of a sphere by a plane normal  to the z axis at the point having 

coordinate z to get 

q* = - -  ~.~t (a ~ - -  z ~) ( 7:T ) : (z). (2) 

Clearly,  the heat flux qz through these  contact a reas  is independent of z, while the mean value of the z com-  
ponent of the t empera tu re  gradient  is dependent on the position. 

We average the t empera tu re  gradient  over the volume of the part icle ,  for which purpose the quantity 
(VT) z(Z) appearing in (2) mus t  be averaged with respec t  to z over the range --(a--6) to a--5;  we use the 
symmetry ,  with respec t  to the plane z = 0 and take only the principal  t e rm in the expansion with respec t  to 

the small  quantity o /a  to get 
a - - 6  

* (" dz q~'~ 2a * q~ ~ ~ ~ - - i n - -  . (3) 
( ".~T )z = -  ~:~(a--5)  , a ' - - - z  "z 2klan 2 6 

0 

Of course ,  the flux qz may be dependent on the orientation of the pair  of contacts  (i. e., on 0 and r  but this 
is unimportant  for the extract ion f rom the integral  with respec t  to dz in (3). Then (1) and (3) give us an expres-  

sion for  the flux: 

, 2na~-~,: , s 
q~ ( r - T ) z ,  v =  <<1, (4) 

In (L/v) 4~ra ~ 

where the mean tempera tu re  gradient  in a par t ic le  appears on the right, while v represents  the contact area 

as a fract ion of the total surface area. 

* (VT)~ in relate  to the tempera ture  distribution due solely to the two opposite The quantities q z and (4) 
contacts;  we now derive the relat ion between the analogous quantities due to all the contacts  of the part icle  
with its neighbors.  It is c lea r  that the above with the definition of f (0, ~0) and the l ineari ty of thermal  conduc- 

tion together  imply 

ct~ = j" cl~ ~ dOq* cos 0~ (0, tp). (5) 
0 0 

Further ,  the quantity (VT) *7. in (4) is equal to the mean tempera ture  difference between the contacts  along 
the z axis as divided by the p, ar t icle  diameter  2a;  Fig. l a  shows that this difference is equal to the t rue mean 
tempera tu re  gradient  (V T)x  along the x direct ion for  the mean heat flux in the sys tem as multiplied by the 

Here,  of course ,  we envisage random packing; if the packing is regular ,  the distribution is not continuous, 

but in that case  the problem is even simpler.  
$ The contact geomet ry  shown in Pig. lb and implied by (1) cor responds  to idealization of an actual contact, 
since no allowance is made f rom the local deviation f rom spher ica l  shape. 
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project ion on the x axis of the d iameter  of the sphere  para l le l  to the z axis, i . e . ,  vy 2a cos 0, so (VT> z = 
(VT) ~ cos 0, and (4) and (5) give 

* t' cos20f(0' ~) (6) 
q, = ~2~a2~  < T T ) *  dcp d01n[1/v(0, q0)] ' 

0 0 

In par t icu lar ,  the conditions of uniform state of s t ra in  (i. e., complete s tat is t ical  i sotropy in the bed) must  
imply that v(0, q~) = ~ = const and f(0, ~o) = ~/8~r, so f rom (6) we have 

q* = - -  ~n'~a2 ~,lln -~ (l/v) < ~ T  > * (7) 
4 

In the genera l  anisotropic case ,  the dependence on the angular var iables  is substantial,  and the coef-  
ficient of proport ional i ty  between (V T) ~ and q~ in (6) will be dependent on the direct ion of heat propagation, 
so the choice of this direct ion influences the definition of the angular var iables  and hence that of the ~(0, ~p) 
and f (0, ~o) functions, so (7) is replaced by the more  genera l  formula  

q* = - -  ~a---~ ~IN < v T  > *, (8) 
4 

where q* and (VT) * are  vectors ,  so N is a t rue second- rank  tensor.  It is  c lea r  that isotropic packing (in 
par t icu lar ,  chaotic or  random) implies that the principal  axes of this coordination tensor ,  which render  the 
t ensor  diagonal, should coincide with the principal  axes x i of the state of strain, while the eigenvalues N i can 
be calculated f rom (6) by setting the x direct ion along the corresponding principal  axis x i. It is convenient 
to r epresen t  the eigenvalues in the form 

N~ = l n - l ( 1 / v i ) = - - l n - l v l  (i = 1, 2, 3), (9) 

where v i has the meaning of the effective fract ion of the contact a reas  along the direct ion i. The v i can be 
expressed  in t e r m s  of the p a r a m e t e r s  that govern the distribution and proper t ies  of the contacts by means of 
(6). In cer ta in  instances (part icularly for  beds of rough or  i r r egu la r  par t ic les ,  where no r igorous analysis  
is possible) it is  convenient to consider  these quantities as empir ica l  pa r ame te r s  to be determined,  for in- 
stance, f rom experiment.  

We now derive, the relat ion between the mean heat flux q and the mean tempera ture  gradient  V7 = Y <T> 
for  the granular  bed as a whole; f i rs t  of all, we consider  lines that join any two points on the par t ic les  and that 
lie ent irely in the d ispersed  phase, which gives V (T> - (Y T> ; fur ther ,  q is equal to the product  of q* by the 
mean number  of par t ic les  that in tersec t  unit a rea  normal  to the x axis. The latter is the resul t  f rom dividing 
p by the mean a rea  of intersect ion between unit sphere and such an area,  which is 2~a 2/3, so (8) finally gives 

q ----- - -  A~-'~, A : 3/8- z~p~,lN, (10) 

where the eigenvalues Ai of the tensor  A act  as thermal  conductivities along the axes x i. 

Equations (9) and (10) relate the effective f ramework  conductivities A i to the conductivity of the par t ic les  
and the packing cha rac te r i s t i c s ;  they provide major  conclusions on the effects of var ious observable quantities 
on the t ransport .  Fo r  instance, we may examine the effects on A i f rom the corresponding principal  normal  
s t r e s s  a i and the par t ic le  size, for which purpose we express  v i in t e r m s  of these quantities by means of the 
solution to the corresponding contact  problem in the theory of elast ici ty (a Hertz  problem in the present  case). 
This solution implies [8] that 

N F 2 / ~ E  - 2 / 3  a - 4 / 3  (11) ~ i 

where the force  F i acting on a single contact  in direct ion i is proport ional  to a i a  2, and so 

1 : c ( E I  2/3, in I_[_ = I n C  ,-k 2 In E 2 ln__E_E (12) 
v i \ a i / v i 3 o~ 3 a i 

where C is a coefficient of proport ional i ty  of the o rder  of 1, which in mos t  instances can simply be neglected. 
Then (12) i l lus t ra tes  the relat ionship of Ni and A i f rom (9) and (10) to the corresponding compress ive  s t ress  
a i. The state of s t r e s s  in a rea l  bed is usually anisotropic,  so when we speak of f ramework  conductivity the 
bed is to be considered as a body with anisotropic thermal  or  e lec t r ica l  conduction. 

Also, (12) i l lus t ra tes  how the f ramework  conduction is dependent on the speed of an ascending flow of 
continuous phase passing through the bed. If we neglect the res is tance,  which does not vanish even if the 
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weight of the particles is  balanced by the upthrust,  the s t r e s s e s  ~i(u) can be descr ibed approximately as fol-  
lows: 

~i(u ) 7 - -~ (u )  ~/(0), ~(u)--,u z, (13) 
7 

where ~r = 2 and ~r = 1 for the limiting cases  of large and small  Reynolds numbers  for  a single part icle,  
respectively.  The s t re s se s  become zero  when the speed reaches  the value corresponding to onset of fluidiza- 
tion u 0, which sat isf ies  ~(u0) = ~, ; a simple calculation f rom the above formulas  gives 

,4 
A i = 

B i - -  2,3 In [ 1 - -  (U/Uo) ~" ] (14) 

A = 3 ~ p t ~ l ,  Bi=__2 In E~ -- lnC.  
8 3 a~ (0) 

This implies  that the A i decrease  monotonically as u increases ,  and the more  rapidly the smal le r  ~r i .e . ,  
the smal le r  the part icles .  This decrease  is of logari thmic type, and it is not par t icular ly  large if u is not 
too close to u0, but the A i rapidly become zero* as u tends to u 0. The dependence of u is the more  pronounced 
the smal le r  B i in (14), i . e . ,  the higher the initial s t r e s se s  in the bed. In par t icular ,  the form of the relat ion-  
ship tends to vary  with the level in the bed, and these general  conclusions are  confirmed by experiments on 
the e lec t r ica l  conductivity of beds of steel spheres  [9]. 

The arguments  leading to (11)-(14) deal only with the regions of direct  (physical) contact between the 
par t ic les ,  which is sufficient for  the e lec t r ica l  conductivity of a bed in an ideal insulating medium and also 
for heat t ranspor t  in a granular  bed at ve ry  low p r e s s u r e s  or very  low tempera tures .  

It also follows f rom (12) that the f ramework-conduct ion coefficient should not be dependent on the part icle 

radius. 

The contribution f rom the f ramework  conduction can be est imated by putting the flux of (10) into c o r -  
respondence withthe flux due to the conductivity in the continuous phase, provided a cor rec t ion  is applied for 
the dis tor ted i so therms  and flow lines. If we use the resul t  of [3] for this flux, we find that the contacts are  
important  in the t r anspor t  if v sat isf ies  the inequality 

In 1 < 8a~__9_9 ~_~, (15) 

where fl (p) is the rat io of the effective conductivity of the bed on neglecting the contacts  between the par t ic les  
to the conductivity of the continuous phase when ~t >> ~0; for the values of p of in teres t  given in [3] we have 

(0) ~ 10. 

In the genera l  case ,  the v i are  dependent not only on the s t r e s ses  in the bed, but also on the pa ramete r s  
represent ing the continuous phase and the rate  of the t r anspor t  [2]; for instance, the effective contact areas  
increase  somewhat in heat t r ans fe r  at low gas p r e s s u r e s  on account of the annular regions near  the direct  
contacts  in which the distances between the surfaces  are  comparable  with the mean free path of the gas mole-  
cules, in which case  there  is heat t r ans f e r  by the f ree -molecu le  mechanism. Radiative heat t r ans fe r  can 
resul t  in the same effect, and this is important  at high temperatures .  Therefore ,  the effective a reas  of con- 
tact  may  exceed substantially the a reas  of physical  contact. 

If an e lec t r ica l  cur ren t  flows in such a bed (charge t ransport) ,  e lec t r ica l  breakdown can occur  in the 
narrow gas gaps separating the par t ic les ,  and therefore  the v i and the effective conductivity will increase  with 
the current ,  as has been observed [5]. The same applies to any other change in the external  conditions that 
facil i tates ionization of the gas between the par t ic les ,  e .g . ,  the specific res is tance  of the bed should fall as 
the gas humidity and tempera ture  are  increased,  as has been observed [10]. The available measurements  on 
the effects of t empera ture ,  cur ren t ,  and other fac tors  on the e lect r ical  conductivities of granular  beds indicate 
that this theoret ical  model  provides  a good qualitative description. For  instance, one expects that the effects 
of the cur ren t  will be less  at high t empera tu res ,  since the conditions are  a l ready favorable to ionization; fu r ther  

* In fact, of course ,  the effective conductivities do not become exactly zero,  because some contacts  pers i s t  
in the bed even ff u = u 0, and the number  of these is the l a rge r  the g rea t e r  the deviation f rom ideal spherical  
form. Some part  is played also by the res is t ive  s t r e s ses ,  which do not vanish for u =u 0. 
?Of course ,  this argument  neglects  the possibil i ty that the type of packing (e. g., the coordination number) is  
dependent on the par t ic le  size for a given macroscopic  state of s t ress .  
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the electrical conductivity will be dependent on the ionization potential of a gas more markedly the lower the 

humidity and temperature, and so on. 

So far, the particles have been considered as identical, while the thermal conductivity of the continuous 
phase has been taken as close to zero; if we wish to extend the theory to a situation where even one of these 

assumptions does not apply, it becomes necessary to solve several different independent problems, and the 
treatment falls outside the framework of this study. Here we merely briefly note some major features that 
may occur. 

We first assume that the conduction in the continuous phase is comparable with the contact conduction, 
i.e., the quantities in (15) are comparable; in that ease we can use the general method of [3] but with in- 
dependent heat transport for the dispersed phase. As a result, the effective thermophysical parameters of 
the dispersed medium are again determined by solving the problem for a trial particle, but the treatment is 
then more complicated than that of [3] because the temperatures of the phases cannot be considered as identica~ 
even under steady-state conditions, so it is necessary to consider heat transfer from a trial particle not to 

one fictitious homogeneous medium but to two such, which stimulate the individual phases and which are repre- 
sented by different transport equations. 

Let the bed consist of spherical particles of different sizes but composed of the same material; if we 
neglect the heat transport through the continuous phase, the problem is readily reduced to that examined above 
provided we introduce the distribution f' (a) for the radii of the spheres  and the distribution f" (a; a ')  for the 
radii of the par t ic les  a in contact with the par t ic le  of radius a '  ; on the s implest  assumption (an entirely random 
structure) we have f" (a; a ')  = f' (a). In that case ,  the proper t ies  of the contacts will be dependent on the radii 
of both contacting par t ic les  [the relation replacing (1) is readily derived], and instead of f(O, ~,) we have to 
consider  the distribution f(0, q~; e4 a')  for the contacts  of par t ic les  of radius a' with other par t ic les  of radius 
a such that 

; f" (a; a'), 5~f(O, r a, a')dOd~ = ~ 
(16) 

~f(B, r a, a')da =]:(0, rp; a'), ,f(O, ~p; a')da' =f(O, r 

where f(0, ~; a ' )  is the distribution of the pai rs  of contacts  for par t ic les  of radius a' with par t ic les  of any 
radius,  with at t rea ted  as a parameter .  A simple argument  completely analogous to that above gives us 

q.*~ =2~)~1 I VT}.*v d~p d@ da da' a'2[(@'g~;a'a')cos2@ (17) 
,~ . l n [ 1 / v ( O ,  q~; a ,  a ' ) ]  ' 

0 0 

which replaces  (6); the t rans fe r  f rom (17) or  f rom equations following from (17) of the type of (7) and (8) to an 
equation of type of (I0) is e lementary:  it is only neces sa ry  to determine cor rec t ly  the mean area  of the in- 
tersect ion between any par t ic le  in the bed and a plane by averaging the quantity 2~a2/3 used in deriving (10) 
over  the distribution f' (a). 

It is more  complicated to incorporate  differences in physical  proper t ies  between the par t ic les ;  to 
i l lustrate tiffs we consider  only the t ranspor t  in a binary mixture of par t ic les  identical in size and such that the 
t ranspor t  coefficient for par t ic les  of the f i rs t  Mnd is k 1 (different f rom zero),  whereas  th~ value for the 
par t ic les  of the second t ime is zero. As before,  we neglect  the t ranspor t  in the continuous phase and in- 
t roduce the fract ion ~ of conducting part icles .  This situation is of direct  pract ica l  interest ,  since dilution of 
conducting par t ic les  with inert  ones is somet imes  used in operations with e lec t ro thermal  granular  beds to 
increase  the specific res i s tance  and thus to reduce the heat re lease  on applying a voltage. In tha tcase ,  we have 
to consider  the effective conductivity of a network of linked identical r e s i s to r s  that stimulate the part icles ,  
with the s t ruc ture  of the network defined by the bed packing features ,  while there is a probabili ty 1--c~ that 
par t i cu la r  par t ic les  may not be involved in the t ransport .  This is a c lass ica l  node problem in flow theory 
(see recent  reviews in [11, 12]), which has previously been used for locally inhomogeneous semiconductors ,  
insulators ,  fe r romagnet ics ,  and so on, although the t rea tment  is extremely complicated and requires  addi- 
tional analysis. The problem becomes even more complicated if the particles of both types are of finite con- 
duetivity or if there are several types of particle. 

A, 
force; f, 

NOTATION 

Bi, parameters in (14); a, particle radius; C, coefficient in (12); E, Young's modulus; F, compression 
f', f", local distribution fluxes; Ni, eigenvalues of coordination tensor N ; Q, q, local and mean 
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heat fluxes; s, a rea  of contact;  T, t empera tu re ;  u, u0, f i l t ra t ion speed and fluidization onset speed; xi, s t r e s s  
axes; ~ ,  proport ion of conducting par t i c les  in binary mixture; /3(~) ,  rat io of effective conductivity of medium 
containing noncontacting par t i c les  to the effective conductivity of the continuous phase for  X 1 >> h 0; 31, par t ic le  
density minus specific buoyancy; 5, compress ion  length; ~, coordination number;  0, ~, angular coordinates  
of contact  re la t ive  to mean flow direct ion;  4,  exponent in (13) and (14); Ai, eigenvalues of conductivity tensor  
A; h0, ht ,  conductivit ies of continuous and d i spersed  phases;  v, f ract ion of surface  a rea  rep resen ted  by a 
single contact;  p, volume content of d i spersed  phase; o, compress ive  s t ress ;  r ,  mean tempera ture ;  if, d i s -  
tr ibution hmction; ~(u), hydraulic force  pe r  unit par t ic le  volume; *, values r e f e r r e d  to one par t ic le ;  < ), 
averages. 
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A C O M B I N E D  N U M E R I C A L  M E T H O D  F O R  D E T E R M I N I N G  

THE C O N D U C T A N C E  O F  C O M P O S I T E  B O D I E S  

G.  N. D u l ' n e v ,  M. A. E r e m e e v ,  
Y u .  P .  Z a r i c h n y a k ,  a n d  E .  N. K o l t u n o v a  

UDC 536.242:518.61 

We propose  a new numer ica l  method (a combination of the method of gr ids  with Rayleigh' s 
method) which is  ve ry  promising for  the calculat ion of potential  f ields,  fluxes, and conductance 
of composi te  bodies, especia l ly  in the case  of components with sharply differing proper t ies .  

We consider  a two-component  region in the form of a cylinder made up of two hemispheres  which are  in 
contact at the point A (Fig. 1). As an example,  we consider  the problem of determining the effective con- 
ductance, say the effective the rma l  conductivity, of the composi te  region. We denote the the rmal  conductivity 
of the ma te r i a l  of the hemispheres  by s and that of the ma te r i a l  filling the gap between them by h 2, where 
X 1 and k 2 may be substantial ly different.  Suppose (for the sake of definiteness) that the bases of the cyl inder  
are  isopotential  ( isothermal)  planes and that the la tera l  surface  is impenetrable  to the s t reaml ines  (an 
adiabatic surface).  Such a composi te  sys tem is often used for  constructing a model  of the s t ruc tu re  of granular  
ma te r i a l s  when we calculate  the i r  effect ive coeff icients  of genera l ized  conductance ( thermal  conductivity, 
e l ec t r i ca l  conductivity,  d ie lect r ic  permit t iv i ty ,  magnetic permeabi l i ty ,  etc. ). 

Leningrad Institute of P rec i s ion  Mechanics and Optics. Trans la ted  f rom Inzhenerno-Fiz icheski i  
Zhurnal,  Vol. 32, No. 2, pp. 284-291, Feb rua ry ,  1977. Original  ar t ic le  submitted Feb rua ry  9, 1976. 

This material is protected by copyright registered in the name of  Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part" I 
Iof this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, I 

crofilming, recording or otllerwise, without written permission o f  the publisher. A copy of  this article is available from the publisher for $ Z50. 

174 


